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I.  INTRODUCTION

This report is concerned with the construction of a high-
frequency solution for the diffraction of an electromagnetic wave
obliquely incident on a curved edge in an otherwise smooth, curved,
perfectly-conducting surface surrounded by an isotropic, homogeneous
medium. The surface normal is discontinuous at the curved edge, and
the two surfaces forming the edge may be convex, concave or plane.
The solution is developed within the context of Keller's geometrical

1,2,3 (referred to simply as the GTD henceforth)

theory of diffraction
so the dyadic diffraction coefficient is of interest. Particular
emphasis is placed on finding a compact, accurate form of the diffraction
coefficient valid in the transition regions adjacent to shadow and
reflection boundaries and useful in practical applications.

According to the GTD, a high-frequency electromagnetic wave incident
on a curved surface with a curved edge gives rise to a reflected wave,
an edge diffracted wave, and an edge excited wave which propagates
along a surface ray. Such surface ray fields may also be excited at
shadow boundaries of the curved surface. The problem is easily
visualized with the aid of Fig. 1, which shows a plane perpendicular
to the edge at the point of diffraction QE' The pertinent rays and
boundaries are projected onto this plane. To simplify the discussion
of the reflected field we have assumed that the local interior wedge
angle is < m. According to Keller's generalized Fermat's principle,
the ray incident on the edge QE produces edge diffracted rays ed and

surface diffracted rays sr. In the case of convex surfaces the

surface ray sheds a surface diffracted ray sd from each point Q on its path,
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Fig. 1. Incident, reflected and diffracted rays and their
associated shadow and reflection boundaries projected
onto the plane normal to the edge at the point of

diffraction QE.

ES is the boundary between the edge diffracted rays and the surface
diffracted rays; it is tangent to the surface at QE. SB is the shadow
boundary of the incident field and RB is the shadow boundary of the
reflected field, referred to Sinp]y as the reflection boundary hence-
If both surfaces are illuminated, then there is no shadow

forth.
boundary at the edge; instead there are two reflection boundaries for

the problem considered here. Since the behavior of the ray optics

field is different in the two regions separated by a boundary, there
is a transition region adjacent to each boundary within which there

is a rapid variation of the field between the two regions.
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In the present analysis it is assumed that the sources and
field point are sufficiently removed from the surface and the
boundary ES so that the contributions from the surface ray field can

be neglected. The total electric field may then be represented as

(1) F=F o +E "+ E

in which Fﬁ is the electric field of the source in the absence of
the surface, E' is the electric field reflected from the surface with
the edge ignored, and fd is the edge diffracted electric field. The
functions ui and u" are unit step functions which are equal to one in
the regions illuminated by the incident and reflected fields and to
zero in their shadow regions. The extent of these regions is determined
by geometrical optics. The step functions are shown explicitly in Eq. (M)
to emphasize the discontinuity in the incident and reflected fields at
the shadow and reflection boundaries, respectively. They are not included
in subsequent equations for reasons of notational economy.

The diffracted field as defined by Eq. (1) penetrates the shadow
region, which according to geometrical optics has a zero field, to
account for the nonvanishing fields known to exist there, But the
correct high-frequency field must be continuous at the shadow and
reflection boundaries; hence the diffracted field must compensate
the discontinuities in the incident and reflected fields there.
In other words, the diffracted field must provide the correct

transition between the illuminated regions and the regions shadowed

by the edge.




The high-frequency solution described in the next sections is

obtained in the following way. A Luneberg-Kline expansion4

for the
jncident field is assumed to be given. The reflected field is |
expanded similarly and related to the incident field by imposing
the boundary condition at the perfectly-conducting surface. Only the
leading term, the geometrical optics term, is retained. Next the
general form of the leading term in the high-frequency solution for
the edge-diffracted electromagnetic field is determined. The wedge
(straight edge) geometry is treated first; its dyadic diffraction
coefficient is deduced from the asymptotic solution of several canonical
problems. Some parameters in this diffraction coefficient are seen
to depend on the type of edge illumination. They are determined for
an arbitrary incident wavefront by requiring the leading term in
the total field to be continuous at the shadow and reflection boundary.
It is found that only a slight extension of the solution for the wedge
is needed to treat the more general problem posed by the curved edge.
This report is the third in a series of reports dealing with

5

edge diffraction. In the first report™ the Pauli-Clemmow method of

steepest descent was employed in a manner different from that

employed by Pauh‘6

to obtain a more accurate asymptotic solution for
the field diffracted by a wedge. We showed that our generalized Paﬁ]i
expansion can be transformed term by term into a generalized form of
the asymptotic expansion given by Oberhettinger7. The leading term
in our expansion was found to be more accurate than the leading term
in Oberhettinger's expansion; furthermore, our leading term for the

diffracted field contains a simple correction factor, which permits
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the field to be calculated easily in the transition region. This
property is of considerable practical importance, because it enables
one to use the geometrical theory of diffraction in the transition
regions without introducing a supplementary solution. The correction
factors, referred to here as transition functions are simply included
with the diffraction coefficient.

In the first report only the scalar problem of plane waves
normally incident on the edge of wedge is considered. In the second

8 this work is extended to obtain a dyadic diffraction coefficient

report
for a perfectly-conducting wedge illuminated by obliquely-incident

~ plane, conical, and spherical waves. By introducing the natural,
ray-fixed coordinates, the dyadic diffraction coefficient obtained
from each of these canonical problems is reduced to the sum of two
dyads. In other words, the matrix formed by the elements of the

dyadic diffraction coefficient is a two by two diagonal matrix.

The diagonal elements of this matrix are simply the scalar dif-
fraction coefficients, D and D, for the Neumann (hard) and

Dirichlet (soft) boundary conditions, respectively. The transition
functions appearing in DS and Dh have the same form for the four

types of illumination; in each case only a Fresnel integral is
involved. However the argument of the Fresnel integral depends

upon the type of illumination. Outside of the trahsition regions these
factors are approximately one, and Keller's expressions for the dif-
fraction coefficients are obtained. The asymptotic solutions

described in this paragraph help us formulate the solution for a

more general type of illumination of the wedge, as noted earlier,




The analysis of wedge diffraction has had a lengthy history.
Only a few of the reports and papers have been mentioned thus far.
Many of the more important papers on this subject may be found in
references 9, 10. A good review of wedge diffraction and the specia]
case of half plane diffraction is given in Chapters 6 and 8 of
reference 9. Recently Anluwalia, Boersma, and Lewis have written some
paper's”’]z’]3 of special relevance to the work described here. References
11 and 12 describe high frequency asymptotic expansions for scalar waves
diffracted by curved edges in plane and curved screens and
reference 13 extends this work to a curved edge in a curved surface.
The authors make use of ray coordinates, and some of their results
dealing with rays and wavefronts have been helpful in the development
of our solution. Nevertheless, there are some noteworthy differences
between their solutions and this one, apart from the fact that their
problem is scalar instead of the vector probiem treated here. Their
formulation or ansatz begins with the total field, and the
resulting correction of the ordinary GTD solution in the transition
region is different from ours. It appears that our result is the

more convenient to apply.

II. THE GEOMETRICAL OPTICS FIELD

The geometrical optics field, which is the sum of the leading
terms in the asymptotic expansions for the incident and reflected
fields, is a part of our high frequency solution for the edge
diffraction. The asymptotic expansions for the incident and

reflected fields are presented in this chapter; the results are




not new and so they may be familiar to the reader, but they are
included here for the sake of completeness and continuity in the
discussion.

Let the smooth, curved perfectly-conducting surface S be a
part of our curved edge structure; this surface is defined by
the position vector Rs(u,v), where u and v are the curvilinear
surface coordinates with Uev=uUu-n=y- n =0 in which the

superscript "»" denotes a unit vector and n is the unit vector

normal to S, see Fig. 2.

0

Fig. 2. Geometry associated with the reflection by a
curvedsurface S.
A high-frequency electromagnetic wave propagating through an
isotropic, homogeneous medium is incident on S. The incident and
reflected fields and quantities associated with them are denoted

7




by the superscripts (or subscripts) i and r, respectively. The

boundary condition on the electric field at S is
(2) Ax[E'(R,) + E"(R)]= 0.

Since we are interested in an asymptotic high frequency solution,

the incident and reflected fields are expanded in Luneberg-Kline

series for large w

. » E (R)
(3) ER ey
w0 (jw)
where an e‘j"’t time dependence is assumed and k = w/Vp with vp the

phase velocity of the medium. The electric field is a solution

of

(4) (¥ + kK®)E = 0

subject to the condition that
(5) v.E-=0.

Substituting Eq. (3) into Eqs. (4) and (5) and equating the
coefficient of each power of w to zero, one obtains the eikonal

equation

(6) vyl = 1,

together with the transport equations




(7a)  LE + 7 (FWE, =0,
5 = o1 2 v b2
(7b) B o (VOE =SB, m=1,2,3 .00,

whose solutions must also satisfy

(8a) S . Eo

]
o
-

= 1,2,3 «--,

—
[02)
o
~—
w>
.
i
1
<
<l
.
™
—
-
=2

where vy = s a unit vector in the direction of the ray path, which
is normal to the wavefront y(R) = constant, and s is the distance

along the ray path.
We are interested here in the solution at the high frequency

limit, where the asymptotic approximation for E reduces to

(9) E(s) ~ eIk (8) £ (s)

Equation (7a) is readily integrated, and after some manipulation

one obtainsm’]5

— = P1P2
(10) Eo(s) = EO(O{J(p]+S)(p2+S)

in which s=0 is taken as a reference point on the ray path and Pys
pp are the principal radii of curvature of the wavefront at s=0.

In Fig. 3 07 and po are shown in relationship to the rays and




wavefronts. Employing the Maxwell curl equation v x E = =juuH, it
follows from Eq. (3) that the leading term in the asymptotic ap-

proximation for the magnetic field is

(11) ﬁ'\,chxE

where Yc =Je/u is the characteristic admittance of the medium, and
E is given by Eq. (9).
Employing Eq. (6),

dy = vy - s ds = ds;

consequently,
(12) p(s) = v(o) +s.
do
do
CAUSTICS

Fig. 3. Astigmatic tube of rays.
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From Eqs. (10), (12) and (9) one obtains the leading term in the

asymptotic expansion

(13) E(s) » Eﬁ(o) e-jkw(o:/(p]+:;?§2+s) e-jks’
which is recognized as the geometrical optics field; this could have
been deduced from classical geometrical optics employing power
conservation in the tube of rays shown in Fig. 3.
It is apparent that when s = -py Or -p, Eq. (13) becomes infinite
so that it is no Tonger a valid approximation. The congruence of
rays at the lines 1-2 and 3-4 of the astigmatic bundles of rays is
called a caustic. As we pass through a caustic in the direction of
propagation the sign of pt+s changes sign and the correct phase shift
of +n/2 is introduced naturally. Equation (13) is a valid high
frequency approximation on either side of the caustic; the field at
a caustic must be found from separate considerations]6’17.
Returning now to our problem of reflection at the perfectly-
conducting surface S, the incident field is known thus the El(ﬁg,
are known. The E;(?;) are found by using the boundary condition,
We take the surface S as the reference point on the reflected ray
so s = 0 there; furthermore let us modify our notation for the
incident field at point of reflection QR on S, denoting it by
Ei(QR). Now substituting Eq. (3) into Eq. (2) and equating 1like

powers of w,

11




ik, (0)

oo miku(Qg)
(14) n x E_(Qp)e +nxE (o) =0, =0,1,2,3 ==
m' R m

3
If this equation is to be satisfied‘for all m, then
(15)  w;(Qp) = ¥,(0),

and since the above is true for every point on S,

(16a)  u - vy (Qg) = u - Wy.lo),
(16b) v - Wi (Qg) = v+ Vo),
or

(17a) ' . G=5". 4,

(1i7b) st .v=8"-V.

Thus s' and s’ have the same projection on the plane tangent to 5

at Qp, which leads us to the law of reflection:
The plane of incidence is defined by the incident ray and the 1

normal to the surface at the point of incidence. The reflected ray

lies in the plane of incidence and the angle of reflection o" equals

the angle of incidence 91, where both angles are measured from the

normal to the surface as shown in‘Fig. 2.

12




To determine F:(o) it is convenient to introduce the unit vector
éL perpendicular to the plane of incidence and the unit vectors éh
and é:, which are parallel to the plane of incidence and perpendicular

o

to s’ and gr’ respectively, so that

(18) e, xs = e,

in each case. Then we may set

(19) Eo = e, Eou +e Eo;

at the surface. Employing Egs. (15) and (19) in Eq. (14) we obtain

(20)  ET(0) = E\(Qg) « R=Fo(Qg) - [6/& - &.els

where R is the dyadic reflection coefficient. In matrix notation
the reflection coefficient has a form familiar for the reflection
of a plane electromagnetic wave from a plane, perfectly-conducting

surface

\jl 0}
(21) R =
0 -1

This is not surprising if one considers the local nature of high-
frequency reflection, i.e., the phenomena for the most part depends

on the geometry of the problem in the immediate neighborhood of QR.

13




Thus the surface S can be approximated by its tangent plane at QR’
and the wavefront of the incident field by a plane wavefront.
It follows from Eqs. (13), (15) and (20) that the geometrical

optics reflected electric field

rr
P1%2 o-3ks
(o7%s) (pp*s)

(22) (s) = E (Qp) - R

in which p{ and p; are the principal radii of curvature of the
reflected wavefront at the point of reflection QR. In Appendix I
these radii of curvature are found to be a function of the incident
wavefront curvature, the aspect of incidence and the curvature of

S at QR. In this appendix it is shown that the expressions for

p; and ;; can be put into the form

where p} and p; are the principal radii of curvature of the incident

wavefront at QR and

_ 1 1 RTINS IR T T I T 1L
f-l = f] —-i— - -T) 0 X_loU_I ’X]'UZ’XZ.U]’XZ U2’e ’R'|9R2:|
2 Z|\1 ®

with i] and &2 unit vectors in the principal directions of the

14



incident wavefront, 01 and 02 unit vectors in the principa]/directions
of S at QR’ and R1,R2 the principal radii of curvature of S at QR.
Equations (23a,b) are reminiscent of the simple mirror formulas of
elementary physics; this is particularly true in the case of an
incident spherical wave, where p} = p; = s' and fl’ f2 are focal
distances independent of the range of the source of the spherical
wave.

In principle the geometrical optics approximations can be ’
improved by finding the higher order terms E?(R), fg(ﬁ), ss+ in
the reflected field, but in general it is not easy to obtain these
from Eqs. (7b), (8b), (14) and (15). Furthermore, these terms do
not correct the serious errors in the geometrical optics field
resulting from the discontinuities at reflection and shadow boundaries.
In the next section we will construct high-frequency approximafions
for the edge diffracted field which in combination with the geometrical

optics field yield a continuous total field.

ITI. THE EDGE DIFFRACTED FIELD

The smooth surface S has a curved edge formed by a discontinuity
in its unit normal vector. Points on the edge are defined by the
position vector r. When an electromagnetic wave is incident on
the edge a diffracted wave emanates from the edge. The leading
term in the high frequency approximation for the electric field is

assumed to have the form
'j k‘Pd (-ﬁ)

(24) FIR) ~ ?_J_-k—_— A(R) .

15




Substituting the above expression for Ed into Eqs. (4) and (5), and

again equating the coefficient of each power of w to zero, one obtains

(25) 0] = 1,
(26) d—s T+ ;_ (#y)E = 0,
(27) s-A =0,

and from the discussion in the preceding section, it follows that

(28) Ed(S) = Ed(O')J-(E_%g—;—(FrE)' e_jks

in which

@) o - Ko TN

Jk
and s is the distance along the diffracted ray from a reference point
0' which is not a caustic of the diffracted ray, see Fig. 4.

It is convenient to locate the reference point of the diffracted
ray at the edge point QE from which it emanates; however the edge is
a caustic of the diffracted field. On the other hand, it is clear
that Ed(s) given by Eq. (28) must be independent of the location
of 0', hence

1im E9(0') Vo' exists.

Furthgrmore Ed(s) is proportional to the incident electric field at

QE, so we may set

16




(30)  1im E90") Jo' =E(Q) - T,
| 0'>0

where D is the dyadic edge diffraction coefficient, which is analogous

to the dyadic reflection coefficient of the preceding section.

DIFFRACTED
RAY

Fig. 4.

Thus the edge diffracted electric field

(31) Els)~E . T T e~Jks

in which p is the distance between the caustic at the edge and the
second caustic of the diffracted ray.

In appendix II it is shown that

1_1 1_1
(32) -p—--ﬂ-‘l’?-——-l-- 2

17




wherein p: is the radius of curvature of the incident wavefront at
QE taken in the plane containing the incident ray and e is the unit
vector tangent to the edge at QE’ ﬁe is the associated unit normal
vector 1.0 the edge directed away from the center of curvature, a>0
is the radius of curvature of the edge at QE, and By is the angle
betweer) the incident ray and the tangent to the edge as shown in
Fig. ‘5Ha. Equation (32) is seen to have the form of the elementary
mirrar and lens formulas in which f is the focal distance. If p is
positiive, there is no caustic along the diffracted ray path; however
the caustic distance p is negative if the (second) caustic lies
between QE and the observation point. The diffracted field calculated
from Eq. (31) is not valid at a caustic, but as one moves outward from
QE éalong the diffracted ray, a phase shift of +x/2 is introduced
naturally after the caustic is passed as in the case of the geometrical
optics field.

Since the high frequency diffracted field has a caustic at the
edge Eq. (31) is not valid there, and we can not impose a condition at
QE to determine D in a manner similar to that used to find R. Never-

theless, the matching of the phase functions at the edge

(33)  w(Q) = 9(0g) = wy(Qg) |
is a necessary condition, which yields some useful information about
the solution. Since the phase is matched at each point on the edge,

it follows from Eq. (33) that

e - vwi(QE) = . vwr(QE) =e . de(QE),

18



i.e.,

(34) e-s' =e-s"=e.s.

The angle of incidence in this case is By, defined earlier and shown
in Fig. 5a, cos By = e - §i, 0 < B < n/2. The angle of diffraction
By is the angle between the diffracted ray and the tangent to the
edge at QE; cos Bd =e . §, 0 < By < /2. Keller's law of edge dif-
fraction follows from Eq. (34).

The law of edge diffraction: the angle of diffraction Bg is equal

to the angle of incidence Bys SO that the diffracted rays emanating
from QE form a cone whose half angle is Bs and whose axis is the
tangent to the edge. The incident ray and the ray reflected from
the surface at QE also 1ie on the cone of the diffracted rays.

The form of the dyadic diffraction coefficient will be treated
next. If an edge-fixed coordinate system is used to describe the
components of the incident and diffracted fields, it has been found
that the dyadic diffraction coefficient is the sum of seven dyads[18,19];
in matrix form this means that the diffraction coefficient is a 3 x 3
matrix with 7 non-vanishing elements. However from Eqs. (8a) and (27)
it is apparent that if a ray-fixed coordinate system were used in place
of the edge-fixed coordinate system, the diffraction coefficient would
reduce to a 2 x 2 matrix, so that no more than four dyads would be
required. A further reduction in the number of dyads can be anticipated

if the proper ray-fixed coordinate is chosen. Recall that this kind of

simplification is achieved in the case of the dyadic reflection coefficient,

19
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if the incident and reflected fields are resolved into components
parallel and perpendicular to the planes of incidence and reflection,
respectively, where the plane of reflection, which contains the normal
to the surface and the reflected ray, coincides with the plane of
incidence. Analogous planes of incidence and diffraction can be defined
in the present case.

The plane of incidence for edge diffraction, referred to simply
as the edge-fixed plane of incidence henceforth, contains the incident
ray and the unit vector e tangent to the edge at the point of incidence
QE. The plane of diffraction contains the diffracted ray and e.
These planes are depcited in Fig. 5; they are azimuthal planes with
respect to the polar axis containing e, and their poSitions can be
specified by the angles ¢' and ¢ shown in Fig. 5b. The unit vectors
$' and $ are perpendicular to the edge fixed plane of incidence and
the plane of diffraction, respectively. The unit vector §i = §' is
in the direction of incidence at the edge and the unit vector s is in
the direction of diffraction. The unit vectors éé and éo are parallel
to the edge fixed plane of incidence and the plane of diffraction,

respectively, and

(35a,b) B

Thus the coordinates of the diffracted ray (s,n-30,¢) are
spherical coordinates and so are the coordinates of the incident ray
(s',so,¢'), except that the incident (radial) unit vector points toward

the origin QE.

21




According to Keller's theory[3] the diffraction coefficient for
a curved edge may be deduced from a two-dimensional canonical problem
involving a straight edge, where the cylindrical surfaces which form
the edge are defined by the boundary curves depicted in Fig. 5b. In
the present discussion the edge may be an ordinary edge formed by a
discontinuity in the unit normal vector, an edge formed by a discontinuity
in surface curvature, or an edge formed by a discontinuity in some higher
order derivative of the surface.

Consider the z-components of the electric and magnetic fields in

the presence of this surface with an edge

d

_ i r
(36a) EZ + EZ + EZ .

m
I

d

ooyl r
(36b) H_ = Hz + HZ + Hz,

they satisfy

(37) (¥ + k%) = 0

Hy
together with the soft (Dirichlet) or hard (Neumann) boundary
conditions

oH

= -2z =
(38,39) Ez =0 or N 0,

respectively, on the boundary curve and the radiation condition
at infinity. The 3/on is the derivative along the normal to the

boundary curve.

22




Starting with the high frequency solutions for the z-components

of the diffracted field
3

£ _
7 s
(40) fms_ififﬁl A

Hg J¥

y
and substituting these into Eq. (37), and employing the methods

(R),

described earlier, the asymptotic solutions may be put into the form
3

d\ i
i
EZ Ez DS, . iks
(41) d"\l ; ’s_(stT e
Hz Hz Dh

in which 65 is referred to as the soft scalar diffraction coefficient
obtained when the soft boundary condition is used, and Dh is referred
to as the hard scalar diffraction coefficient obtained when the
hard boundary condition is used.

Since

i_ o
(42a) E, = EB. sin B, »
0

(42b) Wl =Y_El, sin g,

)
d_ d _.
(43a) E, = -EB0 sin B,
d _ d .
(43b) H, = =Y, E¢ sin g,
c

’ with 1/Yc = L. =/ uw/e the characteristic impezdance of ‘the medium,
|

23
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it follows from Egs. (41), (42), and (43) that

-d i
LBO Eeé Ds
- " -jks .
(44) 0 N s{o¥s) © >
L¢ E¢I Dh

consequenf]y, the dyadic diffraction coefficient for an ordinary (or
higher order) edge is a perfectly-conducting surface can be expressed

simply as the sum of two dyads

(45) D= -BE, D, - 8% D,
to first order. Since Dg and Dy are the ordinary scalar diffraction
coefficients which occur in the diffraction of acoustic waves which en-
counter soft or hard boundaries, we see the close connection between
electromagnetics and acoustics at high frequencies. Also, it follows that
the high frequency diffractiop by more general edge structures, and by thin
curved wires can be described in the form given by Eqs. (44) and (45).

The balance of this report is concerned with finding expressions
for Ds and Dh which can be used in the transition regions adjacent to
sl 1adow and reflection boundaries in the case of diffraction by an
orclinary edge. Recently Keller and Kaminetzky[20] and Senior[21]
have' obtained expressions for the scalar diffraction coefficients 1in
the case of diffraction by an edge formed by a discontinuity in
surface curvature and Senior[22] has given the dyadic (or matrix)
diffrac tion coefficient in an edge-fixed coordinate system. Keller
and Kamirietzkey[20] also have given expressions for the scalar
diffraction coefficients in the case of higher order edges.

The dififraction by a wedge will be considered first; the straight
edge serves as a good introduction to the more difficult subject of

diffraction by a curved ecge. As noted earlier, the dyadic diffraction
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Fig. 5b. This expression becomes singular as shadow or reflection
boundaries are approached, which further aggravates the difficulties
at these boundaries resulting from the discontinuities in the incident
or reflected fields. The above scalar diffraction coefficients have
been given by Keller[3].

Grazing incidence, where ¢' = 0 or n7 must be considered separately.
In this case D, = 0, and the expression for D,, given by Eq. (4) must be
multiplied by a factor of 1/2. The need for the factor of 1/2 may be
seen by considering grazing incidence to be the limit of oblique
incidence. At grazing incidence the incident and reflected fields merge,
so that one half the total field propagating along the face of the wedge
toward the edge is the incident field and the other half is the reflected
field. Nevertheless in this case it is clearly more convenient to regard
the total field as the "incident" field. The factor of 1/2 is also |
apparent if the analysis is carried out with ¢' = 0 or nn.

Combining Egs. (31), (45) and (49) it is seen that the diffracted

field is of order k™1/2

with respect to the incident and reflected fields.
At high frequencies this means that the diffracted field is in general
weaker than the incident and reflected fields, at aspects not close to
shadow and reflection boundaries.

To simplify the discussion, the wedge angle has been restricted so
that 1 < n < 2; however, the solution for the diffracted field may be

applied to an interior wedge where 0 < n < 1., The diffraction coef-

ficient vanishes when

sin'%-= 0;
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hence for n = 1, the entire plane,
n=1/2, the interfor right angle,
n=1/M, M= 3,4,5 «--, interior acute angles,

the boundary value problem can be solved exactly in terms of the‘in-v
cident field and a finite number of reflected fields, which may be
determined from image theory. Moreover as n - 0, even with the
presence of a non-vanishing diffracted field, the phenomenon is
increasingly dominated by the incident and reflected fields.

Returning now to the subject of exterior edge diffraction, the
total field changes rapidly in the vicinity of shadow and reflection
boundaries. In the case of the shadow boundary its behavior is
predominantly that of the incident field on the i1luminated side,
whereas it is that of the diffracted field, emanating from the edge,
on the shadow side. For example if the wedge is illuminated by a plane
wave perpendicular to its edge, the total field varies‘from an
essentially plane wave behavior to a cylindrical wave behavior in
the vicinity of the shadow boundary. These regions of rapid field
change adjacent to the shadow and reflection boundaries are

referred to as transition regions. In the transition regions the

magnitude of the diffracted field is comparable with the incident
or reflected field, and since these fields are discontinuous at
their boundaries, the diffracted fields must be discontinuous}at

shadow and reflection boundaries for the total field to be continuous

there.
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An expression for the dyad1c d1ffract1on coefficient of a
perfectly-conducting wedge which 1s va11d both within and outside
the transition regions[8] is provided by Eq. (45) with
; ek

(50) D (4.0"58,) =

h 2n12wk singg

-

X cot(——iﬁlﬁi))F[kL a+(¢-¢')]+cot(;iiilill) FIkL a” (¢-¢')]

2n 2n

/

#{cot (ﬂg:;}?;l) FIKL a*(4+e') Jrcot (l‘é%iﬁl)F[kL 2 (¢+6")]
where N )
(51)  F(x) = 2j[x e J eI 4

in which one takes the principal (positive) branch of the square root,

and

(52) a(p4') = 2 cos’ (2“"Ni£(¢¢¢'))

in which N° are the integers which most nearly

satisfy the equations

(53a) 2mNT-(92e') = 7

and

(53b) 4 2N -(o%¢') = -

The above expression for the soft (s) and hard (h) diffraction

coefficients contains a transition function F(X) defined by Eq. (51),
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where it is seen that F(X) involves a Fresnel integral. The

magnitude and phase of F(X) are shown in Fig. 6, where X = kla.

(542)  |F(X)] <1 .

(54b) 0 < phase F(X) < n/4 .
When

(55) X > 10,

F(X) ~ 1.
If the arguments of the four transition functions in Eq. (51) exceed
10, so the transition functions can be replaced by unity, Eq. (50)

reduces to Eq. (49).

(56) X = kL a*(¢+4")

in which L is a distance parameter, which was determined for several

types of illumination. It was found that

S sinzs0 for plane wave incidence,
]

(57) L = <{}{¥;r for cylindrical wave incidence,
ss' . 2 . .

s+sT Sin"s, for conical and spherical wave

3
incidence,

\.
where the cylindrical wave of radius r' is normally incident on the
edge, and r is the perpendicular distance of the field point from

the edge. A more general expression for L, valid for an arbitrary

wavefront incident on the straight edge, will be determined later.
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The largeness parameter in the asymptotic approximation used to
find Dﬁ js kL. For incident plane waves the approximation has
been found to be accurate if kL > 1.0, unless n is close to one,
then kL should be > 3.

ai(¢ + ¢') is a measure of the angular separation between the
field point and a shadow or reflection boundary. The + and - super-
scripts are associated with the integers Nt and N7, respectively,
which are defined by Egs. (53a,b). For exterior edge diffraction
N+ = 0or 1and N = -1, 0 or 1. The values of N as functions of
nand 8 = ¢ + ¢' are depicted in Figs. 7a and 7b; these integers are
particularly important near the shadow and reflection boundaries
shown as dotted lines in the figures. It is seen that N® do not
change abruptly with aspect ¢ near these boundaries, which is a
desirable property. The trapezoidal regions bounded by the solid
straight lines represents the permissible values of g for 0 < ¢,
¢'_<_n1rw1'th'l_<_n§_2.

At a shadow or reflection oundary one of the cotangent functions
in the expression for Dﬁ givei: by Eq. (50) becomes singular; the other
three remain bounded. Even though the cotangent becomes singular, its

product with the transition function will be shown to be bounded.

However let us first note the location of the boundary at which each
cotangent becomes singular; this information is presented compactly
in Table 1. The locations of the shadow and reflection boundaries when
only one surface of the wedge is i1luminated and when both surfaces of

the wedge are illuminated are shown in Figs. 8a, b, ¢ below Table 1.
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Fig. 7. N*, N as functions of g and n.
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TABLE 1

The cotangent is singular
when

value of N
at the boundary

m+(¢=0")\ | ¢= ¢' - 7, a SB
cot ( n ) surface ¢=0 is shadowed

N =20
-(¢-¢") ¢= ¢' + m, a SB -
cot ( n ) surface ¢=nm is shadowed N =0
cot (¢+¢' ¢ = (zn'])“’¢'s a RB +
n reflection from surface ¢=nm N =1
cot [ Tzlote! ¢=T - ¢', a RB -
n reflection from surface ¢=0 N =0
A
=@ )N
~N
~ qb - ~
= N ¢’
AT O P o)
/ \ <
< P+
A v
n N

\ nmr

n
(c)

(2n—l)\1r—¢>'

Fig. 8. Shadow and reflection boundaries for different

angles of incidence ¢'.
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Since discontinuity in the geometrical optics field at a shadow or
reflection boundary is compensated separately by one of the four terms
in the diffraction coefficient, there is no problem in calculating the
field when two boundaries are close to each other or in juxtaposition.
This occurs when ¢' = 0 or nm and when ¢' is close to nn/2 with n ~ 1.
The shadow and reflection boundaries are real if they occur in physical
space, which is in the angular range from 0 to nw; outside this range
they are virtual boundaries. If a virtual boundary is close to the
surface of the wedge, as it is when ¢' is close to = or (n=1)m, its
transition region may extend into physical space near the wedge and
significantly effect the calculation of the field there. The value
of N* or N” at each boundary is included in Table 1 for convenience;
as noted earlier, this is a stable quantity in the transition regions.

Next it will be shown that the product of the cotangents and the
transition functions in Eq. (50) is finite, even at the shadow and

reflection boundaries. To facilitate the discussion let

(58) B="¢ + ¢" .

In the neighborhood of the shadow or reflection boundary

(59) 8 = 2n IN* ¥ (n - €),

where ¢ is positive in the region illuminated by the incident or
reflected field. The * superscript of N is directly associated with
the ¥ sign in the equation above and the + sign in the argument of

the cotangent below.
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For ¢ small,

™+ B 2n

and
2
£08 2 27nN*-g e
(61) a~(B) = 2 cos ('_TT__—-) N .

The transition function F(X) is given by Eq. (51) with X = kLa*(g).

We are concerned with the case where kL is large but X is small, so that

. s T T
. iz -7 J(—+ X)
(62) F(X)g_(lva-ZXe YL 4) e\ :

From Eqs. (60), (61) and (62),

(63) cot(-ﬂzﬁ—ﬁ) FIkL a®(g)] =

i) i T
n( ’anL sgn ¢ - 2kLee 4) e 4

for ¢ small. It is clear that the above expression is finite but
discontinuous at the shadow and reflection boundaries. These
discontinuities compensate the discontinuity in the incident or
reflected field at these boundaries, as will be shown in the
paragraphs to follow.

The high frequency approximation for the total field being con-
sidered here is the sum of the geometrical optics field and the
asymptotic approximation of the diffracted field. It is convenient
to give the components of these fields in the ray fixed coordinate

system described on page 21; hence it will be necessary to transform
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the components of the reflected field given in the first section to
this coordinate system. We will begin by carrying out this trans-
formation, which is facilitated by employing matrix notation.

From Eqs. (21) and (22) the reflected electric field

3 1 ol [
(64) v [ ] g f(S),
E o -1| |E

L

==

==

where the subscripts u and L denote components parallel and per-

pendicular to the ordinary plane of incidence and

i i
P1 P2 o-Jks

(65) f(s) = 3 3
(D]+S)(PZ+S) :

Note that for the plane surfaces forming the wedge, p; = p}, p; = p;,
where p}, p; are the principal radii of curvature of the incident
wavefront at the point of reflection. Equation (64) may be written

more compactly as

(66) E" ~ RE' f(s) .

The ordinary plane of incidence and the edge-fiked plane of incidence
intersect along the incident ray passing through QE' The ordinary
plane of incidence, the edge-fixed plane of reflection, and the cone
of diffracted rays intersect at the ray reflected from QE' The edge-
fixed plane of reflection contains the tangent to the edge and the ray
reflected from QE' These planes and their lines of intersection are

depicted in Fig. 9.
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Fig. 9. Edge fixed plane of incidence and reflection.

Let the angle between the edge-fixed plane of incidence and the
ordinary plane of incidence be -o. In Appendix III it is shown that
the angle between the edge-fixed plane of reflection and the ordinary
plane of incidence is o. The components of the incident electric field

parallel and perpendicular to the edge-fixed plane of incidence are

(67a) Eéé = E; cos o - ;1 sin o
(67b)  E',.= El sin o+ E cos a
) ] 1

or in the more compact matrix notation
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(68) E = T(-o)E]

where

cosa -Sina
(69) T(-a) =
sina  COSa

From Eq. (66) the reflected electric field

(70) E" ~ RE' £(s) H(e)

in the neighborhood of the reflection boundary

(71) H(e) = %- (1 + sgn )

is the unit step function.
The components of the reflected field parallel and perpendicular to

the edge-fixed plane of reflection are given by

(72) T(Q)E" = [T(c)RT(~a) 1 I[T(=a)E' T £(s) H(e)

From Eq. (69) and R as given in Eq. (21),

(73) T(a)R T(-a)~} = R;

hence from Eqs. (68), (70), (72) and (73)
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3 gl

B B!
(74) O o 1 [] 0] 0 f(s) (1 + sgn ¢)
72 lo -1 ) an /.

2 Eye

The diffracted field close to the reflection boundary at ¢ = m=¢'
is given by Eq. (31) together with Eqs. (50) and (63)

d i .
E E_, i
B 8 o s
o | ol [ 3] R e e e
E¢ \ E¢. 0 \S(pe +3)

+ terms which are continuous at this boundary.

For the total field to be continuous at the reflection boundary,
the sum of the discontinuous terms in Eqs. (74) and (75) must vanish;
hence

i
I p _4
(76) - Stra o e IkS + £(s) = 0,
ods(og * )

so that the distance parameter
i i i .52
s(pl, +s) oy oy siN"8y

o;(p} + S)(p; +s)

(77) L =

The behavior of the incident and diffracted fields at the shadow
boundary ¢ = = + ¢' may be treated in the same manner. After passing
beyond QE’ the electric field of the incident ray in the neighborhood

of the shadow boundary is

E 3
B. Bl
(78) Ol 2 [}) ﬁ’] ol £(s) (1+sgn ).
1 1
E¢ E¢.

The diffracted field close to this shadow boundary is
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38 i
(79) b o L Pe e~IKS can ¢+
i sin B 1 g
o 1 LE, oy slpg *5)

+ in terms which are continuous at this shadow boundary.

For the total field to be continuous at the shadow boundary, the sum
of the discontinuous terms in Egs. (78) and (79) must vanish, and again
it is seen that L is given by Eq. (77). Equation (77) is also obtained
when the leading term in the high frequency approximation for the total
field is made to be continuous at the other shadow and reflection
boundaries. Also Eq. (77) reduces to Eq. (57) for the several types

of incident waves for which formal asymptotic solutions were derived.
We conclude therefore that the expression for L given by Eq. (77) is
correct when the wedge is illuminated by an incident field with an
arbitrary wavefront whose principal radii of curvature are p; and p;.

Since kL is the large parameter in the asymptotic approximation,

B, can not be arbitrarily small, which precludes grazing and near grazing
incidence along the edge.

The commentary on Eq. (49) in the case of grazing incidence along the
surface of the wedge also applies to Eq. (50), i.e., the diffraction
coefficient Dh is multiplied by a factor of 1/2 and the diffraction
coefficient DS = 0.

If n=1o0r2, it is apparent from Eq. (52) and the integral values

of N* that

(80) a*(s) = a(g) = 2 cos” § .

Thus
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(81) cot (—“%—r?-) F[kLa+(3)] + cot (21;"—8) FlkLa™ ()]

[cot(izi)+ cot (;r_;_s)] F [kLa(g)]

-2 sin

F [kLa(8)] ,

Slwi3|a

m
Ccos n cos

and from Eq. (50) the expressions for the scalar diffraction coefficients

reduce to

(82) D (4,0'38,) =
h

S
€ ST | FlkLa(¢-9")] = FlkLa(e+¢')]
ny2rk sin B, | cos = = cos Lo=e') ;d") cos = - coS ﬁ%ﬁl

e

The edge vanishes for n = 1 and the boundary surface is simply a perfectly-
conducting plane of infinite extent. It is seen that the diffraction
coefficients and diffracted field vanish for this case as expected.

If n = 2 the wedge becomes a half plane and

(83) D (¢,4"38,) =
h
-j *
- 4 FlkLa(¢-¢')] ;  FlkLa(sto')]
22k sin g, | cos (%‘L) cos (%L)

which can be written in the form
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(84) D (450"38,) =

h
iT 2 o-0"
4 J2kL cos (9?9_)
-e _L_ 1 L g
;ﬁ]—%\/:[f(kl-m ¢') e sgn(n+¢'-¢) +
j2kL cos2 ii%ill

7 flkL,ote' e sgn(r-¢' -¢5] ,

where
o .2

(85) f(KL,8) = j S LRPR

[2kL | cos §¢

a Fresnel integral.
When the diffraction coefficients given by Eq. (84) are used to
calculate the fields diffracted by hard or soft half planes il-

luminated by a plane wave, L = s sin2

By and the result is in agreement
with a solution obtained by Sommerfeld[9,24]. Since Sommerfeld's
solution is an exact solution, we know that our solution is exact

for this case too. If these half planes are illuminated by a
cylindrical wave whose radius of curvature is r', L = rr'/(rtr') in
which r is the perpendicular distance from the field point to the
edge, and our solution reduces to an approximate solution deduced by
Rudduck[25] from the work of Obha[26] and Nomura[27]. Rudduck and his

coworkers have applied this solution to a number of two-dimensional

antenna and scattering problems with good accuracy.
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In this section on diffraction by wedges, diffraction coefficients
have been obtained which may be used at all aspects surrounding the |
wedge, including the transition regions adjacent to shadow and
reflection boundaries. The diffraction by curved edges in plane

surfaces and curved sheets will be considered in the next section.

B. The Curved Edge

The diffraction by curved edges will be treated in this section.
As in the preceding section our solution is based on Keller's method
of the canonical problem. The justification of the method is that’
high-frequency diffraction like high-frequency reflection is a local
phenomenon, and locally one can approximate the curved edge geometry
by a wedge, where the straight edge of the wedge is tangent to the
curved edge at the point of incidence QE in Figs. 5a,b, and its plane
surfaces are tangent to the surfaces forming the curved edge. The
reflection coefficient for the curved surface derived in Section I
could have been found by this method, choosing the reflection of plane
waves at a plane surface as the canonical problem. With these
assumptions, the results of the preceding section can be applied
directly to the curved edge problem. As we have just noted, there is
an equivalent wedge (with exterior wedge angle nt) associated with every
curved edge structure, and so in generalizing the solution for the wedge,
it is only necessary to modify the expressions for the distanée parameter
L, which appear in the arguments of the transition functions.

In the present treatment we do not ‘show that our solution can be

matched to a boundary layer solution valid at and near the curved edge.
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It would be desirable to carry this out to confirm the validity of our
solution and possibly to obtain additional terms in the asymptotic
approximation. Ah]uwah’a13 has used a boundary layer solution in this
way to obtain an asymptotic expansion for the scalar field diffracted by
a curved edge; however his representation of the total field differs
from the one given here. It does not appear as separate contributions
from the incident, reflected and diffracted fields.

The diffraction by a curved edge in a plane screen affords the
simplest example of curved edge diffraction. The scalar diffraction
coefficients appearing in Eq. (45) are given by Egs. (83) or (84), and
since p = pl on both the shadow and reflection boundaries, L is the
distance parameter given by Eq. (77). At aspects other than incidence
and reflection, p within the square root term of Eq. (31) must be
found from Eq. (32). As in the case of the wedge, we obtain a high-
frequency approximation at all points surrounding the edge, which
are not too close to the edge or to caustics of the diffracted
field.

The diffraction by a curved edge in a curved screen (n=2) is
next in the order of increasing difficulty. Whenever the surface
forming the edge is curved, the region near it is dominated by surface
diffraction phenomena, which is particularly jmportant on the convex
side. On the convex side of the curved screen there are surface
ray modes, also known as creeping waves, which shed energy tan-
gentially as they propagate along the surface. As a result of this,

the radiation leakage phenomenon is significant in a considerable region
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near the surface. On the concave side of the curved screen we have
bound modes that do not leak energy as they propagate; these modes
are known as whispering gallery modes. Both types of modes are
excited by an illuminated edge in a curved surface; however they also
may be excited by the incident field. As mentioned earlier, surface
diffraction phenomena have been neglected in the present treatment;
hence the region between the convex surface and the boundary ES
between the edge diffracted and surface diffracted rays must be ex-
cluded. The boundary ES is formed by the intersection of the cone of
diffracted rays and the plane tangent to the surface at QE; in general
it does not lie in the ordinary plane of incidence. In addition, the
transition region adjacent to the boundary must be excluded. This
region from which the field and source points are to be exluded appears
as the shaded portion of Fig. 10a, where all rays and boundaries are
shown projected on the plane perpendicular to the edge at QE. It should
be noted that in general the projection of the surface ray Sr does not
coincide with the intersection of the boundary surface S and the plane
of projection.

On the concave side the whispering gallery effect can be
described approximately by geometrical optics in the form of a series
of reflected waves whose rays form cords along the concave reflecting
surface as indicated in Fig. 10b. As glancing incidence is approached,
the cord length diminishes and the description of the phenomenon in
terms of a sequence of reflections breaks down; the geometrical optics

analysis must be truncated at this point. If the errors resulting
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from this truncation are not serious, the radiation from the concave

side can be included in the present analysis.

\ sr
SB
(a) CONVEX SIDE
" RB

(b) CONCAVE SIDE

Fig. 10. Diffraction at the edge of a curved screen,

In this case n = 2, and the scalar diffraction coefficients in Eq.

(45) are given by
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(86) D (¢.6'38,) =

;

-J i r }
e Lk a(e-g')] 3 FkL a(o+9")]

Z/an sinso cos (%L) cos (%‘L)

in which the first term is discontinuous at the shadow boundary, whereas

INE

the second is discontinuous at the reflection boundary. Unlike the
reflection from a plane surface, the divergence or spreading of the wave
reflected from a curved surface is different from that of the incidence
wave; hence the radii of curvature of the reflected and diffracted wave-
fronts at the shadow boundary are distinct from the radii of curvéture
of the incident and diffracted wavefronts at the shadow boundary.
Employing arguments similar to those used to find the distance parameter

for the wedge

i ii .2
. S +s sSin
(87a) oo gpei ) p-'ilpz BO
p (P8 Yopts)
s(pr+s) olob sing

pg(p;+s)(o£+5) ,
where p;, p}, p; are defined as before, p{ and p; are the principal

radii of curvature of the reflected wavefront at QE’ and from Eq. (32)

z(ﬁ.ﬁe)(g--ﬁ)

r i 2
Pe  Pe a sin“g

1.1

(88)
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As ¢' approaches 7 we approach grazing incidence as shown in
Fig. 11. Then since p?p; >0, L" > 0 and Eq. (86) can no longer be
used to calculate the scalar diffraction coefficients. Under these
circumstances the shadow and reflection boundaries usually lie within
the shaded region in Fig. 11, and the transition regions associated
with edge diffraction overlap those associated with surface diffraction.
If the field and source points are both sufficiently far from the edge,
we may set the transition functions in Eq. (86) equal to unity. On
the otherhand, for the field point or source point close to the edge
or for both points close to the edge, we may be able to use reciprocity
(see Appendix IV) to calculate the field at P in Fig. 11, if the distance

parameters for a unit source located at P are large enough.

————-— SHADOW AND
SB REFLECTION BOUNDARY'S
FOR A SOURCE AT P

Fig. 11. Grazing incidence on the edge of a curved screen,
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We conclude this chapter by finding the scalar diffraction coef-
ficients for a curved edge in an otherwise smooth curved surface. Again
we seek diffraction coefficients which can be used in the transition
regions associated with the shadow and reflection boundaries of this
structure. Both surfaces forming the curved edge may be convex, both
surfaces may be concave, one surface may be convex and the other concave,
or one surface may be plane and the other convex or concave.

First let us consider the simple case which occurs when the
i11uminated surface forming the curved edge is plane, as it may be at
the base of a cylinder or cone. For this configuration the reflected
field is found directly from the incident field, as it is in the case
of the wedge, e.g., it may be easily deduced from image theory. Thus
the scalar diffraction coefficients are found directly from Eq. (50) and
the distance parameter from Eq. (77). The calculated diffracted field may
not be accurate close to the shadowed surface if surface diffraction
phenomena are significant.

The more general problem where the i1luminated surface is curved
is closely related to the diffraction by a curved edge in a curved
screen which has just been discussed; for example, the field point
and source point must not be too close to a convex surface and the
case of grazing incidence must be treated separately.

We introduce the wedge tangent to the boundary surfaces of the
curved edge at QE. The boundary ES is formed by the intersection of
this wedge with the cone of diffracted rays. Away from the boundary
ES on the cone of diffracted rays the scalar diffraction coefficients

are given by Eq. (50), except that distance parameter L in the argument of
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each of the four transition functions may be different. As before L
is found in each case by requiring the total field to be continuous
at each shadow and reflection boundary.

It is seen from Figs. 7a,b that N+, N~ associated with the shadow
boundaries at ¢'-m, ¢'+n are different from zero only at angular
distances greater than = from these boundaries. When this angular
distance exceeds n the field point is usually outside the transition
region in question, unless kL is small. In view of the assumptions
involved in extending the wedge solution to the curved edge, the validity
of the approximation is in question for such small values of kL, so
they are excluded here. These considerations and analogous con-

siderations lead us to set the N* equal to the values they have in

Table I.
Then 3T . i
. J 3z 2 sin = F [kL a(¢-4)]
(89) D (6,0"38,) = — x ' :
h 2ny2rk sin B, cos %__ COS(Q;Q )
1 []
+ cot:(éiigﬁi—;) F[kLrna+(¢+¢')]+ cot(?:é%ii-%) F[kLroa(¢+¢')]

in which a(g) = 2 cosz-g

+ _ 2 2mn-g
and a (B) = 2 cos 5

Again employing arguments similar to those used to find the distance
parameters for the edge, one finds that Li is given by Eq. (87a), and
that Lr°, L™ are given by Eq. (87), The additional superscripts o
and n denote that the radii of curvature are calculated at the re-

flection boundaries =-¢' and (2n-1)r-¢', respectively.
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Although the reasoning employed to find the distance parameters is
the same as that used in the preceding cases, namely that the total
field be continuous at the shadow and reflection boundaries, a problem
arises which was not encountered earlier. For a given aspect of in-
cidence it is clear that only two of the boundaries associated with the
three transition functions exist, the other boundary is outside real
space. Since neither the field or source points are pefmitted close to
grazing incidence at ¢' = 0 or nm, it is reasonable to set the transftion
funttion, which is associated with the boundary located outside the
interval 0 < ¢ < nw, equal to one.

At grazing incidence ¢' = = or (n-1)x for which L™ or L™ vanish,
the scalar diffraction coefficients are calculated by the same procedure
used for the curved screen at grazing incidence ¢' = m.

In the far zone where s >> the principal radii of curvature P> P2
of the incident and reflected wavefronts at QE and the radius of curvature
o of the diffracted wavefront at QE in the directions of incidence and
reflection, Egs. (77), (87a), and (87b) simplify to the form

_P1P2 sin’ Po

(90) L 3
Pe

the appropriate superscripts are omitted here for the sake of notational

simplicity.

An interesting case occurs if there is a caustic of the incident,
reflected or diffracted wave on a shadow or reflection boundary. The
radii of curvature Pys P or o associated with such a caustic are negative,
and L may be either negative or positive. If L is positive, the presence of

caustics at these boundaries presents no difficulty, except at points near
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the caustic itself. On the otherhand if L is negative, there is a
problem because the transition function has two branches each with an
imaginary argument. We will restrict our attention to the situation where
all the caustics on the boundary lie between the field point and the edge;
this may occur in far-zone field calculations for example.

As pointed out in the last paragraph of Appendix II, if L is negative
the incident (or reflected) field has one more caustic on the shadow (or
reflection) boundary than does the diffracted field. This means that the
phase of the transition function must change by an additional n/2 as one
moves from a point outside the transition region to the boundary, so that
the transition function must have a total phase variation of 3r/4 instead
of the w/4 phase variation shown in Fig. 6. An examination of the two
branches of the transition function at the boundary and outside the
transition region reveals that they do not have the proper behavior.

When a curved strip is illuminated by a plane wave from its concave
side, there is a caustic of the reflected field on the reflection boundaries.
In treating the scattering from this strip we have found that an adequate
function is provided by

IF(lela)IeJ3[phaSe of F(k L a)]

in which F(k|L|a) is the ordinary transition function given by Eg. (51).
(Note that L and a may have superscripts). In spite of the fact that
the above expression has the proper behavior outside transition regions
and at shadow or reflection boundaries and also appears to yield good
numerical results, it lacks theoretical justification. A satisfactory

derivation of the transition function for L negative is being sought.
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IV. DISCUSSION

A dyadic diffraction coefficient has been obtained for an
electromagnetic wave obliquely incident on a curved edge formed by
perfectly-conducting curved or plane surfaces. Unlike the edge
diffraction coefficient of Keller's original theory, this diffraction
coefficient is valid in the transition regions of the shadow and
reflection boundaries. Although the diffraction coefficient has
been given in dyadic form in the earlier chapters, it can also be
represented in matrix form, so that the high-frequency diffracted

electric field can be written

Eg o, 0] [E}
o] _ o' P -jks
E¢ 0 -D E¢|

and since the high-frequency diffracted magnetic field

(92) d - Y ¢ xm,
Hg D, 0 ns
(93) - X ’ p_ gIks
d j 5{o*s)
He o -p] LK
o o'

in which Ds’ Dh are given by

(a) Eq. (89) for the curved edge (general case),

(b) Eq. (86) for a curved edge in a curved screen,

(c) Eq. (83) or (84) for a curved or straight edge in a plane screen,

and o is given by Eq. (32).
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(d) Eq. (50) for the wedge,

It is pointed out in Section IIIB that the scalar diffraction
coefficients in cases (a) and (b) are not valid at aspects of
incidence and diffraction close to grazing on a convex surface
forming the edge at the point of diffraction. Work is in progress
to remove this limitation. Also grazing incidence on a plane
surface is a special case which requires the introduction of a
factor of 1/2 when calculating the diffracted field, see the
discussion of page 27.

The Targe parameters are kL or kLi, kL" in the asymptotic
approximation; hence when these are small our GTD representation
of the diffracted field is no longer valid. Thus source or field
points close to the edge (s or s' small) must be excluded; also
aspects of incidence close to edge-on incidence (Bo small) must be
excluded. Edge-on incidence is a separate phenomenon, which has
been discussed by Ryan and Peters [28] and by Senior [29].

Outside of the transition regions where the arguments of the
transition functions are greater than 10, the expressions for the
scalar diffraction coefficients all simplify to Eq. (49). Usually
the field point is only in one transition region at a time, so
that the calculation of the diffracted field is simplified because
only one of the transition functions is significantly different from
unity.

One would expect the diffraction coefficients for the wedge to
be more accurate than those for the curved edge, because the

canonical problems involve wedge diffraction. If the curved edge
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were used as a canonical problem, one would anticipate the presence
of additional terms in the asymptotic solution for the diffracted
field; these terms would depend upon the radius of curvature of

the edge at the point of diffraction and its derivatives with

respect to distance along the edge. This is verified by the work

of Buchal and Keller [30] and Wolfe [31], who treated the diffraction
of a scalar plane wave normally incident on a plane screen with a
curved edge.

In calculating the diffracted field, it is assumed that the in-
cident field is slowly varying at the point of diffraction, except
for its phase variation along the incident ray. If the incident field
is rapidly varying at the point of diffraction, it is usually possible
to express it as a sum of slowly-varying component fields, so that
the diffracted field of each component can be calculated in the usual
way and the total diffracted field obtained by superposition. Al-
ternatively, in calculating the diffracted field, one could introduce
higher order terms which depend upon the spatial derivatives of the
jncident field at the point of diffraction. Expressions of this type
were obtained by Zitron and Karp [32] in their tveatment of the
scattering from cylinders; they are also derived in keference 11.

In the text it is pointed out that Egs. (91) and (93) can not be
used to calculate the field at a caustic of the diffracted ray. At
such a caustic it is convenient to use a supplementary solution in
the form of an integral representation of the field. The equivalent
sources in this representation are determined from a suitable high-

frequency approximation, such as geometrical optics or the GTD, In
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the case of an axial caustic, it is convenient to employ equivalent

electric and magnetic edge currents introduced by Ryan and Peters [33];

the use of these edge currents is also described in Reference [34].
In conclusion we note that the geometrical optics field and

our expression for the edge-diffracted field are both asymptotic

solutions of Maxwell's equations. The total high-frequency field

is the sum of these two fields, and away from the edge it is

everywhere continuous, except at caustics. Our solution reduces

to known asymptotic solutions for the wedge, and it has been found

to yield the first two or three terms in the asymptotic expansion

of the diffracted fields of problems which can be solved differently.

Furthermore, the numerical results obtained by its application to

a number of examples are found to be in excellent agreement with

rigorously-calculated and measured values. Also we have been able

to show that our solution is consistent with the reciprocity

principle, see Appendix IV.
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APPENDIX I
THE CAUSTIC DISTANCE FOR REFLECTION

The principal radii of curvature of the reflected wavefront
p;, p; and the principal directions (axes) of the wavefront will be
determined in this appendix. The plane of incidence may be different
from the principal planes of the reflecting surface, so that the
principal directions of the incident wavefront are quite distinct
from those of the reflecting surface.

This problem has been treated both by Fock [35] and by Deschamps; [36]
however they did not find the principal radii of curvature nor the
principal directions of the reflected wavefront. Fock used a surface-
fixed coordinate system to formulate his solution, and he evaluated
the resulting 3 x 3 determinant for the divergence factor D(S) of the
reflected wave after some rather complicated tensor analysis. On the
otherhand, Deschamps formulated his solution in a ray-fixed coordinate
system,* and employing elementary matrix theory together with straight-
forward coordinate transformations, he obtained a 2 x 2 curvature matrix
for the reflected wave from that of the incident wave. We will find
p;, p; and their principal directions by diagonalizing his curvature
matrix.

Let us begin by defining the curvature matrix employed by

Deschamps. Consider the curved surface

*The advantages inherent in using ray-fixed coordinate systems in
treating ray optical problems have already been noted in the text.
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(A-1) z = f(x,y)

with the z axis normal to the surface at the point P where x,y,z = 0.

Thus

(A-2) f =f =0

X y
where
2
of 9 f
f = — = — etc.
X X ? XX ax2 ’

are evaluated at x,y = 0.

In the neighborhood of the origin

2 2
[f X * 2fxy Xy + fyy y~1

2 2
_ 11X Y
"2'[‘2‘*“‘2‘]

° P2

in which pys pp are the principal radii of curvature in the principal

(A-3) 2z ;_-

directions i, ? respectively. With

A

X=xx+yyad X=XX+VYY

Eq. (A-3) may be written in matrix notation

(A-2) z=-;—xQx=%XQOX,

in which Q is a 2 x 2 symmetric matrix and Qo is its diagonal form.

The matrices Q and Qo are referred to as curvature matrices
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XX Xy
(A-S) Q = f f [
Xy Yy
and
L 9
P
(A-6) Q. =
0 1
0 —_——
P d

The Gaussian curvature of the surface

(A-7) K = determinant of Q = |Q] = |Qo| .
Let a wavefront be incident on a curved surface S at QR as

shown in Fig. 2A.

~

G], U2 are unit vectors in the principal directions of S at QR

with principal radii of curvature R], RZ'
i;, i; are the principal directions of the incident wavefront at
QR with principal radii of curvature p;, p;.
§¥, §£ are unit vectors perpendicular to the reflected ray; they
are determined by reflecting the unit vectors i;, i; in the plane tangent

to S at QR’ -

(A-8) X = i} - 2(n - X,
2 2 2

see Fig. 2A. As will be seen, §¥, ;E are not in the principal directions

of the reflected wavefront. We now define
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Fig. 1A. A smooth curved surface near the point P.

lT 0
: P
w9 o= :
0o L
1
P2
kool
(100 ¢ = | :
0 1
Ry
and
LT LT
A.i ~ A-i ~
X+ U Xy « Uy

Deschamps has shown that the curvature matrix for the reflected wavefront

1

(a-12) Q=@ - 2(6)7 ¢ o™ cos ol
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Fig. 2A. Geometry for the analysis of the reflected
wavefront. The reflecting surface is S.
— - - ———Intersection of a principal
plane of S at Qg with S
Intersection of the plane of

— — S—— —

incidence with the plane
tangent to S at Q

————— —Extension of the BefTected ray
below S.
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in which the superscript -1 denotes the inverse matrix, the superscript
T denotes the transpose matrix and o' is the angle of incidence as before.

A result equivalent to Eq. (12) has been obtained by Fock.

of, of
(A-13) Q" = 1 12
r r
Q2 O
where
. 2 2
il (o) (0,4)
(A-14a) qQF =L_2cose[ 22”21 }
i 2 | ol R R,

r 2 cos o | 922912 . ©11%2

. 2 2
il (eq,) (671)
oy lol 1 g
with
Y B
(A-14d) Ojk = Xj Uk .

We have diagonalized Qr to find its eigenvalues 1/p¥, 1/p£.
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! [(922)2 + (0" R (2)° + ,(@11)2]
Ry
i [ (o) (op,)’ . (@21)2'(911)2} .
Y R

2
, 2 2 2 2
4 4 coso’ [((922) o)™ (69)7 + (o) ) 4Ie|2]
|e|2 R R, R,R

in which the + sign associated with p? and the - sign with p;. As noted
in the discussion following Eqs. (23a,b) in the text, this equation has
the form of an elementary mirror formula, except that the reciprocal of
the object distance is replaced by the mean curvature of the incident
wavefront.

The incident spherical wavefront is frequently of interest; Tet
us simplify Eq. (A-15) for this case. For the spherical wave i;, i;
can be chosen in any way convenient. Let i; be in the plane of |
incidence; i; is then parallel to the plane tangent to the surface of

reflection at QR. Referring to Fig. 2A,

(A-16a) X1 = —cos o' sin w Uy + cOs ' cos w U, + sin @' ﬁ,
1 1 2

cosS w 01 + sin w 02,

|
(A-16b) Xo

where » is the angle between the plane of incidence and the ﬁ, Gz principal

plane of the reflecting surface.
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- cos o' sin w

(A-17a) 11

- €] = CO0S 6. COoS w
(A-17b) oy, !

(A-17c¢) 6,7 = COS w

sin w

(A-17d) 090

Using the above Egs.

(A-18) lo] = - cos ei;

furthermore

(A-19a) %(lf + 1_1..)= L

(A-19b) lT‘lT =0.
P P2

Hence, substituting Eqs. (A-17), (A-18) and (A-19) into Eq. (A-15),
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sinze sinze
2 1

1 1 1
(A-ZO) —_—= =+ + +
; S cos e Rl R2
2
s1n e sinze :
+ ! 4
cos e R2 R1R2
with
2 coszw + sinzw cos 61,

(A-21a) sin 9

2

(A-21b)  sin”o, sinzw + coszw cos ei.

8. is the angle between the direction of the incident ray s! and ﬂ1,

1
whereas o, is the angle between S' and 62. Equation (A-20) was obtained
by Kouyoumjian several years earlier using a different method.

We conclude this section by giving the eigenvectors of Qr;

these yield the principal directions of the reflected wavefront with

respect to the x;, x£

[(sz - Lr ) X7 - O ;‘5}
A p]
(A-22) X! =

1
ﬁzz - L2 )2 a,
1

coordinates.

or _arogr
(A-23) Xp = =5° X X1 .
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»x >
[ S

A,
X

Fig. 3A. Principal directions of the reflected wavefront with
respect to the x{, xg coordinates.

It should be noted that the principal directions of the wavefront
are distinct from the principal directions associated with the reflection

matrix; as pointed out in the text the latter are parallel and perpendicular

to the plane of incidence.
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APPENDIX II
THE EDGE CAUSTIC DISTANCE

CURVED
EDGE

Fig. 4A. Caustic distances associated with the diffraction
by a curved edge.

A wavefront is incident on a curved edge at the point QE’ where

the radius of curvature is a, the unit tangent vector is e, and the

unit normal vector to the edge is Be given by the Serret-Frenet formula

= >

(A-28) &= - =

a
in which the super dot denotes differentiation with respect to the distance
along the edge and a is taken to be positive. It is apparent from fhe

above equation that ﬁe is directed away from the center of curvature.




A second useful formula will be derived next.

vector from
(A-25) e
(A-26) v
from which
(A-27) i
Since

(A-28) P
(A-29) r

a

n

point 0 to a point on the edge.

T

r/r

S |sie
-
Al
-~
.

-~

where Eq. (A-26) has been used.
Substituting Eqs. (A-25), (A-26) and (A-29) into Eq. (A-27) and

Let r be the position

dot multiplying both sides of the resulting equation by e, one obtains

(A-30)

According to Keller's law of edge diffraction,

(A-31) s

and so

e-*r-=

1- (e« r)?
r [ ]

e=s5--¢er= S
co Bo
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W >e
L ]
M >
+
v >
.
M >e

(A-32) s'eete-s! =

Employing Eqs. (A-24) and (A-30) in Eq. (A-32)

A P ~ . Al A ~ 2 r; . ;
1-(-s') "e S _1=-(e-s) e
(A'33) _i - a = o - a .
Pe

where pg = s' is the radius of curvature of the incident wavefront at
QE taken in the plane containing the incident ray and 3,
o is the caustic distance; it is also the radius of curvature
of the diffracted wavefront at QE taken in the plane containing
the diffracted ray and e.
Using Eq. (A-31), Eq. (A-33) may be written more compactly as

n, - (s'-s)
(a-30) -l ...
e e asin® g

0 s

which has the same form as the elementary lens equation, where pé and p
correspond to the source and image distances, respectively. Thus we

may write Eq. (A-34) as

1 .1
TtF
Pe

(A-35)

O |-

where f is interpreted as the focal distance. Eq. (A-34) was first given
by Kouyoumjian [8], and it has also appeared in a number of ElectroScience
Laboratory reports [34,37]. Recently Deschamps has rederived Eq. (A-34)
by a different method [36].
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An alternative expression for p has been given by Keller [3];
we will derive it here for the sake of completeness.

From Eq. (A-31)

W e

ce+se=-si R
ST By8

Again using Eqs. (A-25), (A-30) and (A-31)

sinzeo ﬁe . d .
(A"36) > - P = - sin BOBO )
(A-37) 1., ?0 4 COS 8,
P sin &, a sinzeo

Here 6§ is the angle between ﬁe and the diffracted ray.

It has been found more convenient to calculate the edge caustic
distance o from Eq. (A-34), which does not contain any derivatives.

Since the edge is a caustic of the diffracted rays, it is clear
that one of the principal directions of the diffracted wavefront lies
in the plane of diffraction and is perpendicular to the diffracted ray.
The other principal direction is perpendicular to the plane of diffraction
and is thus tangent to the cone of diffracted rays. At a distance s from
the point QE on the edge the principal radii of curvature of the dif-
fracted wavefront are p + s and s.

In general the principal directions of the incident and reflected
wavefronts associated with rays incident and reflected at QE (recall that
these rays lie on the cone of diffracted rays) do not coincide with the

principal directions of the diffracted wavefronts associated with rays

A




diffracted in the directions of incidence and reflection. However in
the edge-fixed planes of incidence (or reflection) the curvature of the
diffracted and incident (or reflected) wavefronts is the same. The
relationship of the diffracted wavefront to the incident wavefront at
the shadow boundary is apparent from Eq. (A-34); on the shadow boundary
s=5s"andso p= pg. The relationship between the diffracted wavefront
and the reflected wavefront on the reflection boundary could be deduced
from Eqs. (A-15) and (A-34), but it may be verified more easily in the
following way. From Eq. (33) the reflected and diffracted phase

functions are the same along the edge, i.e.,
Q) = )
hence

Q) + s = vy + s
in the plane containing the tangent to the edge e and the reflected,
diffracted rays at the reflection boundary. It follows that o = pg,
the radius of curvature of the reflected wavefront in the plane
containing the reflected ray and e. The relationships between the radii
of curvature of the diffracted wavefront and the incident and reflected
wavefronts at the shadow and reflection boundaries described in this

paragraph have been noted by Lewis and Boersma [12].
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APPENDIX III
THE PLANES OF INCIDENCE AND REFLECTION

In this appendix it will be shown that the angle o between the
edge-fixed plane of reflection and the ordinary plane of incidence is
equal to minus the angle between the edge-fixed plane of incidence and
the ordinary plane of incidence. We will refer to the ordinary plane
of incidence simply as the plane of incidence.

The plane of incidence contains the unit vectors s' and n or

;r and ﬁ The edge-fixed plane of incidence contains the unit vectors
s' and e. The edge-fixed plane of reflection contains the unit vectors
;r and e. The plane of incidence and the edge-fixed plane of incidence

intersect along the incident ray at QE' The plane of incidence and
the edge-fixed plane of reflection intersect along the reflected ray
at QE.

Referring to Figs. 2, 5 and 5A and recalling that s! = s' at the
edge,

(A-38a) éi _s' x(nxs')
st x (x s,

(A"38b) I - 'S' X (e X SI)

o
I

Is' x (e xs")| ,

Ar ~ A
r_s x(nxs

(A-38C) e“ - Ar ~ Ar
|s" x (nxs )|

"
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A A €, A
Bo A Aei, | ¢ B
e
L PLANE or\ \/
INCIDENCE '
A /
)
REFLECTED EDGE—FIXED INCIDENT EDGE — FIXED
RAY PLANE OF PLANE OF
REFLECTION INCIDENCE
Fig. 5A. Geometry of the planes of incidence; edge-fixed incidence
and edge-fixed reflection. The incident and reflected
rays are perpendicular to the page and directed outward.
~ (e xs
(A-38d) 2, = sarx (e‘x S“l
s x (exs)|

Let o be the angle between the plane of incidence and the edge-

fixed plane of reflection, see Figs. 9 and 5A,

_ =(n- s")(e . s")
° " [1-(n-s")2I01-(e-5s")?]

COS a = €

wn >

Let ai be the angle between the plane of incidence and the

edge-fixed plane of incidence,
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i, s . _(nest)(e:s')

A-39 ol = e - a5
(A-39)  cos € 0 [1_(n.s')2][1-(e-s')2]

Since (ﬁ-g') = -(ﬁ-;r) from the law of reflection and (é-g') = (e-s")
from the law of edge diffraction, it follows from Eqs. (A-38) and (A-39)

that
(A-40) cos ai = COS a}
hence

(A-81) o =tq .

From the definition of angles in Fig. 5A, o' = -a.
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APPENDIX IV
RECIPROCITY

The Lorentz reciprocity theorem imposes an important condition on
the solution of an electromagnetic problem. This is a necessary con-
dition and approximate solutions which fail to satisfy it may contain
errors which are unacceptably large. We will develop the reciprocity
condition for the edge structure under consideration in this report,
and see if the high-frequency solutions given in Chapter III satisfy it.
Also it will be shown how reciprocity may be used to extend our analysis
to a special configuration where it would not be valid if applied
directly. |

Let the sources g and g' radiate in the presence of én edge
structure as shown in Fig. 6A; the sources are positioned at a finite
distance from the edge and from each other. The surface S resfs on the
perfectly-conducting boundary, except in the immediate vicinity of edge,
and extends to infinity. The surface S_ is the surface at infinity; it
joins with S and together with this surface encloses the region occupied
by the sources g and g'. The surface S is sharply rounded at the edge
so as to enclose it tightly, but its radius of curvature does not vanish
there.

The sources g and g' consist of electric and magnetic current
moments which may be distributed in a volume, over a surface or along a

line, so that the infinitesimal electric current moment
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3& dv, in a volume
(A-42a) dﬁé =\ J_ ds, over a surface
Ig de, along a line

and the infinitesimal magnetic current moment

K& dv, in a volume
(A-42b) dﬁh = K; ds, over a surface
My dg, along a line

in which 3& js the volume density of electric current, KV is the volume
density of magnetic current, etc. Starting with Maxwell's curl equations

in the form
(A-43a) vxﬁ-umf=a§

[= N

L]

_ _ dp
(A-43b) Vv X E+ jou H = v

L]

with a 1ittle manipulation [38] in which the divergence theorem is employed,

one obtains

JE - &, -7 - &y -
source ¢

IR T e dnt =
[€- & -7 &)
source g'

(A-44) é (AxE - xE) *nds,
S+S'm 77




where the source g' and its fields are denoted by primes and the source

g and its fields are the unprimed quantities.

\ .' ® o 0 & o s o SURFACES
* V4 = ++ — SURFACE S

'~

Fig. 6A. Region pertaining to the discussion on the
reciprocity principle.

The fields of g and g' satisfy an edge condition, also n x E,
nxE = 0 on the boundary surface; hence there is no contribution to
the surface integral in Eq. (A-44) from the integration over S. The
fields of g and g' also satisfy a radiation condition, so the

integration over S_ in Eq. (A-44) vanishes too. Thus
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(A-45) (E* - dp_ -H" - dp )= | (E- dp! -H- dp)
e m e m

source g source g'

which is a statement of reciprocity in integral form. Since the above

must be true for any distribution of the sources g, g',

—l.__—._=—.—__o ]
(A-46) E dpe H' dpm E dpé H dpm

It is well known that the geometrical optics field satisfies the
reciprocity condition. Since the total field is the sum of the geometrical
optics field plus the diffracted field it follows that the diffracted
field also satisfies the reciprocity condition; in other words
- 7

- dp_=E - dp -

(A-47) ET' - dp, m e

b d-p_';1 L d

Now Tet us see if the GTD solution for the diffracted field satisfies
Eq. (A-47). We will first consider the reciprocity relationship for a
pair of incremental electric current moments dﬁé, dp'. The electric

e
field of dﬁé incident on the edge is

jkz -jks' . " L
c & s' x (s' x dpe)

(A"48) -E-.I (QE) = [ 3

1 - — - —
SR U D(6,0"38,) * @ h(s,s")

(A-49) | R

(A-50)  EY . dpl =7 - D (4'hg3,) - 3 h(s'ss)
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in which

(A-51a) a = e dp

(A-51b)  a' = T dpé

(A-51c)  h(s,s') = ’s TSy -Jk s+s' )

- 1 e~ik(s'+s)
(A-51d)  h(s',s) = S p ST (o"5s")
1_1,1
(A-52&) E-;+? ,
1 _1 1
(A-52b) Ll ¥ i
and
: . (s'-s)
(A-53) - - 5
Pe sin™B

is unchanged when the source and field points are interchanged. Note

that the directions of §' and s are reversed when they are interchanged.
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Employing Eqs. (A-52) it is seen that

(A-58)  (s'? s)(ﬂ’ii) = (s's)? (JS.+ l)
p P

i

-

(7

wn

g
~nN
/—\
Vv | —

+
ni|—

+
—h|—
S—

s (£

From Eqs. (A-51) and (A-54) h(s,s') has the useful symmetry property
(A-55) h(s,s') = h(s',s) .

To satisfy the reciprocity relationship for electric current sources,

_dl

(A-56) E d

.dEe=E.d_p‘é9
it follows from Eqs. (A-49), (A-50), and (A-55) that it is necessary for

(A-57) @' - D(4»0'38,) = @ =3 - D(s's438)) = 2" .

It is apparent from the form of D in Eqs. (45) and (A-62) that the above

is true if
- ', = .
(A-58) Dﬁ(¢’¢ 38,) Dﬁ(¢',¢.so).

Consequently, to show that our solution satisfies Eq. (A-56), it is

sufficient to show that Eq. (A-58) holds. Furthermore, this is sufficient
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to show that the general expression for reciprocity given by Eq. (A-47)
is also satisfied, because if Eq. (A-58) is true it can be shown in a

o’ =d

manner analogous to the preceding development that H- - dﬁh =H - dﬁk

We will examine the scalar diffraction coefficients for wedge

diffraction first. Referring to Eq. (50), the quantity
1
cot (i(fﬁi-’il) FIKL a (¢+¢')] + cot(ﬁ%:i—))"'[kl- a (¢*¢')]

remains unchanged if ¢ and ¢' are interchanged. The quantity

cot (l.’*_é_%‘_ﬂl) FLKL a (¢=0')] + cot(r—z(ﬁ:ﬁ-)-) FIkL a™(¢=9)]

also remains unchanged, because the two terms are interchanged if ¢ and
¢' are interchanged. This can be shown by noting that when ¢ and ¢' are

interchanged

N' s replaced by - N,

N" is replaced by - N*,
+ [] - ]
thus a (¢'-¢) = a (¢-¢'),
and a (¢'-¢) = a+(¢-¢') .

For the sources dﬁé, dﬁ;

_ ss' . 2
(A-59) L= ST s’ sin BO’




so that it is invariant with respect to an interchange of points defined
by s and s'.

From the preceding discussion it is clear that the scalar
diffraction coefficients for the wedge satisfy Eq. (A-58); hence
our GTD solution for the diffraction of an electromagnetic wave by
a perfectly-conducting wedge is consistent with reciprocity both
within and outside the transition regions.

Turning next to the scalar diffraction coefficients for the
curved edge in the curved screen, it is apparent that Eq. (86) is
unchanged when ¢ and ¢' are interchanged. We note that Li is in-
variant with respect to an interchange of source and observation
points, because it is given by Eq. (A-59). Thus if the pair of sources
are positioned so that they are not in transition regions of each
others reflection boundaries, F[kL"a(s+4')] can be replaced by unity,
and Eq. (A-58) is satisfied. On the other hand, if the pair of
sources dﬁé, dﬁg are positioned on each other reflection boundaries,

the quantities

oS 11 1.1
(A-60a) A=—— =gt =ststE
P1S Py
r
LA T T P
(A'60b) B—-—r‘———-s-'+—?—;+—s—|-+?—2—
p2S P2
- =.Q+_S =l l:l 1 l
(AGOC) ¢ pS S+p S+§T+f




are invariant when s and s' are interchanged. Since

ro L i
(A-61) L' = a5 SN By

it too must be invariant with respect to this interchange, with the result
that Eq. (A-58) is satisfied. Thus we have been able to show that our
GTD solution for the diffraction of an electromagnetic wave by a curved
screen satisfies the reciprocity condition everywhere except in the
transition region of a reflection boundary, and within this region it
satifies the reciprocity condition directly on the boundary itself. It

is therefore reasonable to assume that this solution is consistent with
reciprocity at all points where it is valid, with the possible ex~

ception of some small departures from reciprocity at certain points

in the transition region of the reflection boundary.*

It is pointed out in the text that as ¢' approaches = and one is
close to grazing incidence on the curved screen (see Fig. 11), the
solution for the diffraction coefficients given by Eq. (86) becomes
invalid, because L’ approaches o. However, we may use reciprocity to
calculate Ed(p) in the following way. Set dﬁh equal to o and replace
dﬁé in Eq. (A-47) by a unit electric current moment u directed parallel

1
to the component of Ed (p) which is to be calculated; then for the

incremental sources dﬁé and dﬁk at 0 in Fig. N

*The solution may satisfy reciprocity at these points, but we have
not been able to show it.
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(a-62) - E(p) =70 -{zcﬁ(cb',¢;Bo)-d5é-[ﬁ(¢',¢;BO)XS'] -dﬁ',;,}‘h(s',s)

in which D(o',038,) = -8,80 D (¢'5638,)-04"Dy (¢"5938.)

and h(s',s) is given by Eq. (A-51d). It is assumed here that kL" for
incidence from P is sufficiently large so that our approximation for
the diffracted field at 0 is valid. In Eq. (A-62) one would ordinarily
let

The discussion of reciprocity for the curved edge in the
otherwise smooth, curved surface follows in the same manner as
that for the curved edge in the curved screen. One concludes from
this that Eq. (89) satisfies Eq. (A-58) for all points at which the
scalar diffraction coefficients are valid, except possibly for some
points in the transition regions of the shadow boundaries, were small
deviations from reciprocity may occur. Also if a problem arises in
calculating the diffracted field near grazing incidence on a curved
surface (¢'~r), this calculation may be carried out with the aid of

Eq. (A-62).
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